首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4872篇
  免费   1187篇
  国内免费   1567篇
测绘学   58篇
大气科学   2621篇
地球物理   1637篇
地质学   1563篇
海洋学   344篇
天文学   688篇
综合类   111篇
自然地理   604篇
  2024年   13篇
  2023年   78篇
  2022年   121篇
  2021年   183篇
  2020年   213篇
  2019年   233篇
  2018年   208篇
  2017年   233篇
  2016年   224篇
  2015年   257篇
  2014年   296篇
  2013年   517篇
  2012年   286篇
  2011年   371篇
  2010年   328篇
  2009年   422篇
  2008年   451篇
  2007年   459篇
  2006年   408篇
  2005年   376篇
  2004年   285篇
  2003年   230篇
  2002年   204篇
  2001年   161篇
  2000年   159篇
  1999年   148篇
  1998年   138篇
  1997年   105篇
  1996年   76篇
  1995年   97篇
  1994年   75篇
  1993年   59篇
  1992年   37篇
  1991年   27篇
  1990年   22篇
  1989年   22篇
  1988年   29篇
  1987年   13篇
  1986年   7篇
  1985年   12篇
  1984年   7篇
  1983年   8篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1954年   1篇
排序方式: 共有7626条查询结果,搜索用时 15 毫秒
81.
Despite the long history of the continuum equation approach in hydrology, it is not a necessary approach to the formulation of a physically based representation of hillslope hydrology. The Multiple Interacting Pathways (MIPs) model is a discrete realization that allows hillslope response and transport to be simultaneously explored in a way that reflects the potential occurrence of preferential flows and lengths of pathways. The MIPs model uses random particle tracking methods to represent the flow of water within the subsurface alongside velocity distributions that acknowledge preferential flows and transition probability matrices, which control flow pathways. An initial realization of this model is presented here in application to a tracer experiment carried out in Gårdsjön, Sweden. The model is used as an exploratory tool, testing several hypotheses in relation to this experiment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
82.
The soil conservation service (now Natural Resources Conservation Service) Curve Number (SCS-CN), one of the most commonly used methods for surface runoff prediction. The runoff calculated by this method was very sensitive to CN values. In this study, CN values were calculated by both arithmetic mean (CN_C) and least square fit method (CN_F) using observed rainfall-runoff data from 43 sites in the Loess Plateau region, which are considerably different from the CN2 values obtained from the USDA-SCS handbook table (CN_T). The results showed that using CN_C instead of CN_T for each watershed produce little improvement, while replacing CN_T with CN_F improves the performance of the original SCS-CN method, but still performs poorly in most study sites. This is mainly due to the SCS-CN method using a constant CN value and discounting of the temporal variation in rainfall-runoff process. Therefore, three factors—soil moisture, rainfall depth and intensity—affecting the surface runoff variability are considered to reflect the variation of CN in each watershed, and a new CN value was developed. The reliability of the proposed method was tested with data from 38 watersheds, and then applied to the remaining five typical watersheds using the optimized parameters. The results indicated that the proposed method, which boosted the model efficiencies to 81.83% and 74.23% during calibration and validation cases, respectively, performed better than the original SCS-CN and the Shi and Wang (2020b) method, a modified SCS-CN method based on tabulated CN value. Thus, the proposed method incorporating the influence of the temporal variability of soil moisture, rainfall depth, and intensity factors suggests an accurate runoff prediction for general applications under different hydrological and climatic conditions on the Loess Plateau region.  相似文献   
83.
A physically constrained wavelet-aided statistical model (PCWASM) is presented to analyse and predict monthly groundwater dynamics on multi-decadal or longer time scales. The approach retains the simplicity of regression modelling but is constrained by temporal scales of processes responsible for groundwater level variation, including aquifer recharge and pumping. The methodology integrates statistical correlations enhanced with wavelet analysis into established principles of groundwater hydraulics including convolution, superposition and the Cooper–Jacob solution. The systematic approach includes (1) identification of hydrologic trends and correlations using cross-correlation and multi-time scale wavelet analyses; (2) integrating temperature-based evapotranspiration and groundwater pumping stresses and (3) assessing model prediction performances using fixed-block k-fold cross-validation and split calibration-validation methods. The approach is applied at three hydrogeologicaly distinct sites in North Florida in the United States using over 40 years of monthly groundwater levels. The systematic approach identifies two patterns of cross-correlations between groundwater levels and historical rainfall, indicating low-frequency variabilities are critical for long-term predictions. The models performed well for predicting monthly groundwater levels from 7 to 22 years with less than 2.1 ft (0.7 m) errors. Further evaluation by the moving-block bootstrap regression indicates the PCWASM can be a reliable tool for long-term groundwater level predictions. This study provides a parsimonious approach to predict multi-decadal groundwater dynamics with the ability to discern impacts of pumping and climate change on aquifer levels. The PCWASM is computationally efficient and can be implemented using publicly available datasets. Thus, it should provide a versatile tool for managers and researchers for predicting multi-decadal monthly groundwater levels under changing climatic and pumping impacts over a long time period.  相似文献   
84.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
85.
Satellite rainfall products for landslide early warning prediction have been spotlighted by several researchers, in the last couple of decades. This study investigates the use of TRMM and ERA-Interim data, for the determination of rainfall thresholds and the prediction of precipitation, respectively, to be used for landslide early warning purposes at the Bogowonto catchment, Central Java, Indonesia. A landslide inventory of 218 landslides for the period of 2003–2016 was compiled, and rainfall data were retrieved for the landslide locations, as given by 6 ground stations, TRMM, and ERA-Interim data. First, rainfall data from the three different sources was compared in terms of correlation and extreme precipitation indices. Second, a procedure for the calculation of rainfall thresholds for landslide occurrence was followed consisting of four steps: i) the TRMM-based rainfall data was reconstructed for selected dates and locations characterized by landslide occurrence and non-occurrence; ii) the antecedent daily rainfall was calculated for 3, 5, 10, 15, 20 and 30 days for the selected dates and locations; iii) two-parameter daily rainfall-antecedent rainfall thresholds were calculated for the aforementioned dates; after analysis of the curves the optimum number of antecedent rainfall days was selected; and (iv) empirical rainfall thresholds for landslide occurrence were determined. The procedure was repeated for the entire landslide dataset, differentiating between forested and built-up areas, and between landslide occurrence in four temporal periods, in relation to the monsoon. The results indicated that TRMM performs well for the detection of very heavy precipitation and can be used to indicate the extreme rainfall events that trigger landslides. On the contrary, as ERA-Interim failed to detect those events, its applicability for LEWS remains limited. The 15-day antecedent rainfall was indicated to mostly affect the landslide occurrence in the area. The rainfall thresholds vary for forested and built-up areas, as well as for the beginning, middle and end of the rainy season.  相似文献   
86.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
87.
To better understand the mechanisms relating to hydrological regulations of chemical weathering processes and dissolved inorganic carbon (DIC) behaviours, high-frequency sampling campaigns and associated analyses were conducted in the Yu River, South China. Hydrological variability modifies the biogeochemical processes of dissolved solutes, so major ions display different behaviours in response to discharge change. Most ions become diluted with increasing discharge because of the shortened reactive time between rock and water under high-flow conditions. Carbonate weathering is the main source of major ions, which shows strong chemostatic behaviour in response to changes in discharge. Ions from silicate weathering exhibit a significant dilution effect relative to the carbonate-sourced ions. Under high temperatures, the increased soil CO2 influx from the mineralisation of organic material shifts the negative carbon isotope ratios of DIC (δ13CDIC) during the high-flow season. The δ13CDIC values show a higher sensitivity than DIC contents in response to various hydrological conditions. Results from a modified isotope-mixing model (IsoSource) demonstrate that biological carbon is a dominant source of DIC and plays an important role in temporal carbon dynamics. Furthermore, this study provides insights into chemical weathering processes and carbon dynamics, highlighting the significant influence of hydrological variability to aid understanding of the global carbon cycle.  相似文献   
88.
Mountain and lowland watersheds are two distinct geographical units with considerably different hydrological processes. Understanding their hydrological processes in the context of future climate change and land use scenarios is important for water resource management. This study investigated hydrological processes and their driving factors and eco-hydrological impacts for these two geographical units in the Xitiaoxi watershed, East China, and quantified their differences through hydrological modelling. Hydrological processes in 24 mountain watersheds and 143 lowland watersheds were simulated based on a raster-based Xin'anjiang model and a Nitrogen Dynamic Polder (NDP) model, respectively. These two models were calibrated and validated with an acceptable performance (Nash-Sutcliffe efficiency coefficients of 0.81 and 0.50, respectively) for simulating discharge for mountain watersheds and water level for lowland watersheds. Then, an Indicators of Hydrological Alteration (IHA) model was used to help quantify the alterations to the hydrological process and their resulting eco-hydrological impacts. Based on the validated models, scenario analysis was conducted to evaluate the impacts of climate and land use changes on the hydrological processes. The simulation results revealed that (a) climate change would cause a larger increase in annual runoff than that under land use scenario in the mountain watersheds, with variations of 19.9 and 10.5% for the 2050s, respectively. (b) Land use change was more responsible for the streamflow increment than climate change in the lowland watersheds, causing an annual runoff to increase by 27.4 and 16.2% for the 2050s, respectively. (c) Land use can enhance the response of streamflow to the climatic variation. (d) The above-mentioned hydrological variations were notable in flood and dry season in the mountain watersheds, and they were significant in rice season in the lowland watersheds. (e) Their resulting degradation of ecological diversity was more susceptible to future climate change in the two watersheds. This study demonstrated that mountain and lowland watersheds showed distinct differences in hydrological processes and their responses to climate and land use changes.  相似文献   
89.
Regional models of extreme rainfall must address the spatial variability induced by orographic obstacles. However, the proper detection of orographic effects often depends on the availability of a well‐designed rain gauge network. The aim of this study is to investigate a new method for identifying and characterizing the effects of orography on the spatial structure of extreme rainfall at the regional scale, including where rainfall data are lacking or fail to describe rainfall features thoroughly. We analyse the annual maxima of daily rainfall data in the Campania region, an orographically complex region in Southern Italy, and introduce a statistical procedure to identify spatial outliers in a low order statistic (namely the mean). The locations of these outliers are then compared with a pattern of orographic objects that has been a priori identified through the application of an automatic geomorphological procedure. The results show a direct and clear link between a particular set of orographic objects and a local increase in the spatial variability of extreme rainfall. This analysis allowed us to objectively identify areas where orography produces enhanced variability in extreme rainfall. It has direct implications for rain gauge network design criteria and has led to promising developments in the regional analysis of extreme rainfall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
90.
The regional frequency analysis of extreme annual rainfall data is a useful methodology in hydrology to obtain certain quantile values when no long data series are available. The most crucial step in the analysis is the grouping of sites into homogeneous regions. This work presents a new grouping criterion based on some multifractal properties of rainfall data. For this purpose, a regional frequency analysis of extreme annual rainfall data from the Maule Region (Chile) has been performed. Daily rainfall data series of 53 available stations have been studied, and their empirical moments scaling exponent functions K(q) have been obtained. Two characteristics parameters of the K(q) functions (γmax and K(0)) have been used to group the stations into three homogeneous regions. Only five sites have not been possible to include into any homogenous regions, being the local frequency analysis of extreme daily rainfall the most appropriate method to be used at these locations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号